Przejdź do treści

Banery wysuwane

liternicza okładka w kolorze szarozielonym
Introduction to Technological Design in Ceramics

Dyscyplina
nauki techniczne » ceramika
Kategoria
przecena
ISBN
978-83-7464-300-9
Typ publikacji
podręcznik
Format
B5
Oprawa
twarda
Liczba stron
272
Rok wydania
2012
Opis

New materials are one of the fundamental directions in the development of modern technology - along with such fields as computer science, electronics, biotechnology, energy. Of the three large groups of materials: metals, organic polymers and ceramics, the latter group includes a particularly wide and diverse range of pigments, intermediates and products. The list of ceramic materials being developed today is expanding relentlessly, and new types of materials and even fields of ceramics are being born before our eyes.

Spis treści

Acknowledgments  9
1. Introduction  11
1.1. Modern ceramics  11
1.2. The essence of the ceramics technology  13
1.3. Technology design  14
1.3.1. Economic aspect of the technological processes  14
1.3.2. Development of the material microstructure during the heat treatment   17
1.3.3. Selection of technology and the present book structure  19
2. Thermodynamic aspects of the high-temperature technologies used in ceramic industry  23
2.1. General notes  23
2.2. Classification and characteristics of ceramic reactions in aspect of thermodynamic function changes  25
2.2.1. Classification  25
2.2.2. Exothermic reactions developed in result of the entropy increase  27
2.2.3. Chemical reactions between solids  27
2.2.4. Exothermic reactions, developed in result of the enthalpy reduction  28
2.2.5. Endothermic reactions  29
2.3. Examples of the prediction of high temperature reaction course direction on the basis of thermo-dynamic data  31
2.3.1. Removal of the carbon from copper layered elements in subassemblies of micro-electronic systems  31
2.3.2. Behaviour of calcium chloride in fired ceramic material  33
2.3.3. Synthesis and decomposition of the zirconium (ZrSiO4)  36
2.3.4. Thick-layered metallization of aluminum nitride bases for needs of microelectronics  37
2.3.5. Celsian synthesis  39
2.3.6. Reactions of MgO with carbonate in brickwork working zones of the oxygen converters  40
2.3.7. Mullite decomposition into corundum and SiO  42
2.4. Some reflections aimed at the entropy changes accompanying human activities (entropy concept according to Görlich’s definition)  43
2.5. Additional technological interpretation  45
3. Phase systems  47
3.1. Phases in ceramic materials  47
3.1.1. General notes  47
3.1.2. Condensed phases  48
3.1.3. Role of gaseous phase in firing processes 50
3.2. Some aspects of the phase diagrams interpretation  52
3.2.1. Single and two-component systems  52
3.2.2. Three-component systems  55
3.2.3. Multi-component systems 59
3.3. Phase composition of the clayey raw materials (aluminosilicate) 60
3.3.1. Assessment of the role of admixtures  60
3.3.2. Phase composition changes due to temperature increase and interpretation  61
3.3.3. Calculation cumulated content of the liquid phase and mullite  65
3.4. Examples of technical solutions based on the composition triangles of three-component systems  67
3.4.1. Free lime in ceramic materials  67
3.4.2. Firing synthesis of minerals, which have low coefficient of thermal expansion  70
3.4.3. Phase composition of the self-disintegrating sinters in production of aluminum oxide and cement from non-bauxite raw materials  71
3.4.4. Phases formed during zirconium sand – lime high temperature reaction  72
3.5. Examples of technological problems solution on the basis of the liquid phase characteristics within two and three-component systems  73
3.5.1. Lead-sodium flux in enamel composition and Pb slag  73
3.5.2. Glassy phase in porcelain materials  74
3.5.3. Phase composition of the refractory aluminosilicate products  77
3.5.4. Phase composition and easy-melting eutectics of the basic-type refractory materials  77
3.5.5. Corrosion of aluminosilicate refractory materials – influence of sodium-calcium glass  82
3.6. Supplementary technological interpretation  83
4. Kinetic aspects of the high-temperature ceramic transformations 85
4.1. Use of the kinetic data in ceramic technologies – general notes  85
4.1.1. Character of reactions in ceramic materials  85
4.1.2. Relation between constant reaction speed and temperature  86
4.1.3. Linear kinetics  88
4.1.4. Kinetics of the diffusion controlled reactions in solid phase and with liquid phase presence  89
4.1.5. Kinetics of the reaction of the first order and fractional order reactions  91
4.1.6. Kinetics of the reactions controlled by nucleation  91
4.1.7. Selected examples  92
4.2. Kinetics and mechanism of chosen reactions between solid and gaseous phases  93
4.2.1. Graphite oxidation mechanism  93
4.2.2. Oxidation of organic admixtures in products made from clay materials  94
4.2.3. Thermal treatment of cupric thin-layer elements: kinetic aspect and mass balance  99
4.2.4. Oxidation of heating rods made of molybdenum disilicide  101
4.2.5. Oxidation of products made of silicon carbide  104
4.2.6. Nitriding of highly pure silicon  107
4.3. Kinetics and mechanism of the interactions during crystallization of the reaction product from gaseous phase  109
4.3.1. Obtaining of the layers using method of chemical deposition of the gaseous phase (CVD)  109
4.3.2. High-temperature reactions MgO + C and precipitation of solid periclase layer  114
4.4. Kinetics and mechanism of certain high-temperature transformations and oxide mineral syntheses  116
4.4.1. Transition phase of quartz-cristobalite polymorphous transformation  116
4.4.2. Gamma – alfa Al2O3 transformation  119
4.4.3. High-temperature transformations of anhydrous aluminum silicates  120
4.4.4. Zirconium orthosilicate synthesis  121
4.4.5. Calcium zirconate synthesis  123
4.4.6. Alite synthesis in Portland cement-like compositions  126
4.5. Kinetics and mechanism of some processes occurring on a contact between molten glassy phases and solid phases  129
4.5.1. Dissolution of silica from glass-making batch in alkaline-siliceous alloys  129
4.5.2. Devitrification of silica glasses  133
4.5.3. Characteristics of the kinetics of refractory material corrosion caused by the molten glass  136
4.6. Supplementary technological interpretation  137
4.6.1. Possibility of kinetic process control by suitable selection of temperature and firing time (firing curve)  137
4.6.2. Process course and mechanism versus heat treatment  138
4.6.3. Possibilities of the process kinetics process control by the selection of right fired material properties, and/or the proper selection of the gaseous reagents composition  139
4.6.4. Some notes on technologically disadvantageous reactions  141
5. Dynamic aspect of the ceramic material microstructure formation  143
5.1. Introduction  143
5.2. Transitory and spontaneous reactions of the phase composition transformations  144
5.2.1. Typical constitutive phases occurring in various microstructure formation stages  144
5.2.2. Mullitization of clay raw materials  146
5.2.2.1. Kaolinite transformations in firing initial stage  146
5.2.2.2. Mechanism and kinetics of the mullite phase formation 147
5.2.2.3. Microstructure evolution during high temperatures heating  152
5.2.2.4. Metastable equilibrium states in the Al2O3-SiO2 system  153
5.2.3. Sodium-calcium glass melting and homogenization and a role of sodium sulfate being the initial material component  154
5.2.4. Synthesis of barium titanate from powdered substrates  155
5.3. Effects related with pore systems transformation  158
5.3.1. General notes  158
5.3.2. Hot pressing  160
5.3.2.1. Introduction 160
5.3.2.2. Use of the Hedvall’s effect in clay raw materials hot pressing  160
5.3.2.3. Hot pressing of face bricks made of dusty shales  162
5.3.3. Material porosity and cohesion changes resulting from the material components interaction  163
5.3.3.1. Influence of the raw material composition and type onto building brick microstructure  163
5.3.3.2. Some aspects of the whiteware ceramics fast firing  166
5.3.4. Gaseous bubbles in ceramic materials  167
5.4. Growth of layers deposed on brickworks and refractory elements operational surfaces  171
5.5. Notes on the behavior of some ceramic materials during exploitation in both room and high-temperature conditions  173
5.6. Supplementary technological interpretation  175
6. Structural aspects of the high-temperature reactions and general characteristics of sintering processes  177
6.1. Introduction  177
6.2. Examples of the network structure influence onto technological effects  178
6.2.1. Stabilization of the Ca2SiO4 polymorphous transition  178
6.2.2. High-temperature reactions between ZrSiO4 and CaO and role of the baghdadite phase  180
6.2.2.1. General characteristics of the reaction  180
6.2.2.2. Model of the reaction zone  181
6.2.2.3. Assumptions  185
6.2.3. Phases formed in refractory concretes in the MgO-Al2O3-SiO2 system  186
6.2.4. Ternary Si-C-O phase in process of SiC oxidation  187
6.3. Characteristics of the sintering processes  189
6.3.1. Spontaneous process  189
6.3.1.1. Free enthalpy drop during solid phase sintering  190
6.3.2. Mass transfer processes during solid phase sintering  192
6.3.2.1. Grains rearrangement  192
6.3.2.2. Volume diffusion and diffusion on inter-granular boundaries  194
6.3.2.3. Diffusion on free surfaces and diffusion via gaseous phase  195
6.3.2.4. Other mechanisms  197
6.3.3. Growth of grains during solid phase sintering  197
6.3.3.1. Thermodynamic aspect  197
6.3.3.2. Grain growth mechanism and kinetics  199
6.3.4. Solid phase sintering model (Coble-Kuczyński’s model)  203
6.3.5. Solid phase sintering kinetics  206
6.3.5.1. Measures of sintering advance  206
6.3.5.2. Solid phase sintering kinetics – model of spherical grains  210
6.3.5.3. Sintering kinetics – phenomenological approach  212
6.3.5.4. Kinetic effects in sintering process  213
6.3.6. Solid phase sintering of ceramic powders  216
6.3.7. Sintering with participation of liquid phase – specific sintering  219
6.3.7.1. Introduction  219
6.3.7.2. Rewetting  219
6.3.7.3. Liquid amount and viscosity  222
6.3.7.4. Sintering in conditions of perfect rewetting of the solid body with liquid phase  222
6.3.7.5. Sintering at the presence of liquid, which rewets the solid body imperfectly or poorly  232
6.3.8. Chemical sintering  234
6.4. Supplementary technological interpretation  236
7. Examples of innovative ceramic technology designs 238
7.1. Introduction  238
7.2. Examples of commonly known innovations  239
7.2.1. Low-cement refractory concretes  239
7.2.2. Magnesia – graphite refractory shapes  240
7.2.3. Self-propagating high-temperature synthesis  244
7.2.4. Aluminum nitride-based microelectronics  245
7.2.5. Chemical Vapour Deposition (CVD)  248
7.3. Examples of regional-spread and special innovations  252
7.3.1. Corrosion-resistant slag-alkaline binders  252
7.3.2. Complex conversion of poor aluminum-bearing raw materials into aluminum oxide and cement (J. Grzymek’s method)  255
7.3.3. Calcia refractory obtained with semi-hot consolidation method  255
7.3.4. Immobilization of nuclear wastes with use of ceramic materials  257
7.3.5. Hydroxyapatite bio-ceramics  258
7.3.6. Modification of rice hulls into silicone carbide and silicone nitrides  260
7.3.7. New solutions of the heat resistant materials engineering  262
7.3.8. Composites based on poly-crystalline tetragonal zirconium dioxide (TZP) with granulated wolfram carbide addition  263
References  267

Spis treści
Cena
5,00
/
1.50€
In order to arrange international shipping details and cost please contact wydawnictwa@agh.edu.pl