Spis treści

	Wstęp	7
1.	WŁAŚCIWOŚCI PÓŁPRZEWODNIKÓW	9
	1.1. Struktura i właściwości elementarnych półprzewodników	9
	1.2. Półprzewodniki domieszkowane	19
	1.3. Termodynamika systemów elektronów i dziur w półprzewodnikach	23
	1.4. Półprzewodnik w stanie nierównowagi termodynamicznej	25
	1.5. Przewodnictwo półprzewodników	30
	1.6. Mechanizmy transportu nośników	34
	1.7. Wbudowane pole elektryczne	37
	1.8. Podstawowe równania półprzewodników	38
	1.9. Szumy w półprzewodnikach	42
	Literatura	45
2.	ZJAWISKA KONTAKTOWE	47
	2.1. Prąd termoemisyjny	47
	2.2. Kontakt metal-półprzewodnik (m-s)	48
	2.3. Złącze p ⁺ -n	54
	2.4. Heterozłacza	63
	2.5. Kondensator MOS	65
	Literatura	75
3.	DIODY	77
	3.1. Model diody złączowej p ⁺ -n	77
	3.2. Równanie rzeczywistej diody złączowej p ⁺ -n	79
	3.3. Parametry diody prostowniczej	82
	3.4. Pojemności złącza p ⁺ -n – diody pojemnościowe	83
	3.5. Modele małosygnałowe diody	89
	3.6. Efekty dynamiczne przełączania diody p ⁺ -n	93
	3.7. Diody stabilizacyjne	98
	3.8. Diody tunelowe	
	3.9. Parametry termiczne diody	104

	3.10. Szumy w diodach	108
	3.11. Modele komputerowe diody	109
	3.12. Diody Schottky'ego	114
	Literatura	119
1	TRANZYSTORY BIPOLARNE	121
4.		
	4.1. Budowa i działanie tranzystorów bipolarnych	
	4.1.1. Struktury złączowe i prądy w tranzystorach	
	4.1.2. Konfiguracje i stany pracy tranzystora	
	4.2. Charakterystyki napięciowo-prądowe	
	4.2.1. Model Ebersa–Molla	
	4.2.2. Charakterystyki tranzystora w konfiguracji OE	
	4.2.3. Model transportowy tranzystora	
	4.3. Parametry i modele małosygnałowe tranzystorów bipolarnych	
	4.3.1. Definicje podstawowe	135
	4.3.2. Określenie punktu pracy tranzystora	
	4.3.3. Tranzystor jako czwórnik aktywny	
	4.3.4. Model typu hybryd- π dla konfiguracji OE	
	4.3.5. Model typu hybryd- π dla konfiguracji OB	
	4.3.6. Hybrydowe parametry typu h tranzystora	
	4.3.7. Częstotliwości graniczne tranzystora	147
	4.3.8. Użytkowe parametry małosygnałowe tranzystora	
	w układzie elektronicznym	151
	4.4. Przełączanie tranzystora	
	4.4.1. Warunki pracy tranzystora jako przełącznika	152
	4.4.2. Równanie kontrolne ładunku bazy	
	4.4.3. Tranzystor zintegrowany z diodą Schottky'ego	158
	4.5. Narażenia napięciowe tranzystorów	159
	4.6. Szumy tranzystorów bipolarnych	161
	4.7. Fizyczne i komputerowe modele tranzystorów bipolarnych	164
	4.7.1. Założenia wstępne do modelu Gummela-Poona	164
	4.7.2. Prąd transportowy tranzystora	166
	4.7.3. Model Gummela-Poona w SPICE (model SGP)	172
	4.7.4. Efekty cieplne i model termiczny tranzystora bipolarnego	180
	4.8. Bipolarne tranzystory mocy	186
	Literatura	188
5	TRANZYSTORY POLOWE	190
٠.	5.1. Zasada działania i podział tranzystorów polowych	
	5.1. Zasada działania i podział tranzystorow polowych	
	5.2.1. Warunki pracy tranzystora n-JFET jako wzmacniacza	
	5.2.2. Parametry małosygnałowe tranzystora JFET	
	5.2.3. Ograniczenia czestotliwościowe i czestotliwość odciecia	
	J.Z.J. OZIANOZENIA CZESIOLIWOSCIOWE I CZESIOLIWOSC OUCIECIA	400

	5.3. Szumy w tranzystorach JFET	204
	5.4. Model komputerowy tranzystora JFET w SPICE/PSpice	205
	5.5. Tranzystor polowy z izolowaną bramką (MOSFET) i jego modele	208
	5.5.1. Wielkosygnałowy model zastępczy tranzystora MOSFET	211
	5.5.2. Małosygnałowy model tranzystora MOSFET	212
	5.6. Małosygnałowy admitancyjny schemat zastępczy	
	tranzystorów polowych	217
	5.7. Szumy w tranzystorach MOSFET	218
	5.8. Modele komputerowe tranzystorów MOSFET	219
	5.9. Tranzystory polowe MOSFET dużej mocy	224
	5.10. Porównanie tranzystorów polowych MOSFET	
	z tranzystorami bipolarnymi	230
	Literatura	232
6.	PRZYRZĄDY OPTOELEKTRONICZNE	233
	6.1. Absorpcja światła w półprzewodnikach – fotodetektory	
	6.1.1. Fotorezystory	
	6.1.2. Fotodiody	241
	6.1.3. Fototranzystory	
	6.2. Przyrządy fotowoltaiczne	246
	6.3. Diody elektroluminescencyjne	251
	6.4. Diody laserowe	257
	6.5. Parametry energetyczne i świetlne	263
	Literatura	267
7	TYDYCTODY I TDIAWI	260
/.	TYRYSTORY I TRIAKI	268
	7.1. Budowa i działanie tyrystora	
	7.2. Triaki	
	7.3. Struktury tyrystorowe V-MOS i D-MOS	
	Literatura	281
8	PÓŁPRZEWODNIKOWE PRZYRZĄDY ŁADUNKOWE	282
٠.	8.1. Kondensatory MOS w strukturze CCD	
	8.2. Efekty dynamiczne i transfer ładunku w CCD	
	8.3. Sensory optyczne CCD	288
	Literatura	291
9.	PRZYRZĄDY TERMOELEKTRYCZNE	292
	9.1. Termoprądy w półprzewodnikach	292
	9.1.1. Zjawisko Seebecka	294
	9.1.2. Zjawisko Peltiera	297
	9.1.3. Parametry termoelektryczne materiałów	299
	9.1.4 Efekt Thomsona	302

9.2. Półprzewodnikowe przyrządy termoelektryczne	304
9.2.1. Generator termoelektryczny	306
9.2.2. Chłodziarki termoelektryczne	310
Literatura	313
SYMBOLE, INDEKSY I OZNACZENIA	
PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH	314