Spis treści

	Od Autorów	13
	Wykaz ważniejszych oznaczeń i symboli	15
1.	Wprowadzenie	21
	1.1. Wstęp	21
	1.2. Turbiny wiatrowe	26
	1.2.1. Wpływ turbin wiatrowych na systemem elektroenergetyczny	30
	1.2.2. Poziomy mocy w węzłach oraz przepływy mocy	33
	1.2.3. Wartość napięcia	37
	1.2.4. Harmoniczne prądu i napięcia	41
	1.2.5. Wahania napięcia	43
	1.3. Elektrownie fotowoltaiczne (PV)	45
	1.3.1. Ogniwa fotowoltaiczne	45
	1.3.2. Zastosowania instalacji PV	46
	1.3.3. Warunki rozwoju instalacji PV w Polsce	47
	1.4. Elektrownia hybrydowa	48
	1.5. Przyłączenie źródeł odnawialnych do sieci elektroenergetycznych	49
	1.5.1. Zasady finansowania przyłączenia	54
	1.5.2. Sposoby przyłączania źródeł odnawialnych	
	do sieci elektroenergetycznych	55
	1.5.2.1. Przyłączenie do sieci niskiego napięcia	56
	1.5.2.2. Przyłączenie do sieci średniego napięcia	57
	1.5.2.3. Przyłączenie do sieci wysokiego napięcia	57
	1.6. Kryteria przyłączania oze do sieci elektroenergetycznej nN i SN	59
	1.7. Wyznaczanie maksymalnej dostępnej mocy źródła	62
	1.8. Przyłączenie instalacji fotowoltaicznych	63
	1.9. Przyłączenie elektrowni hybrydowych	64
	LITERATURA	66

2.	Kom	pensacja mocy biernej i stabilizacja napięcia	69
		Wprowadzenie	69
	2.2.	Kompensacja mocy biernej farm wiatrowych	70
		2.2.1. Wymagania operatorów sieci dystrybucyjnej	71
		2.2.2. Regulacja napięcia i mocy biernej	
		w normalnych stanach pracy	72
	2.3.	Praca ze stałym współczynnikiem mocy	78
		2.3.1. Praca z $\cos \varphi = 1$	78
		2.3.2. Indukcyjny współczynnik mocy	79
		2.3.3. Pojemnościowy współczynnik mocy	82
		Stabilizacja napięcia	84
		Praca ze stałą moca bierną	86
		Inne metody sterowania	88
	2.7.	Charakterystyki stosowanych turbin wiatrowych	
		z punktu widzenia kompensacji mocy biernej	88
		2.7.1. Elektrownia wiatrowa z generatorem asynchronicznym	
		pierścieniowym dwustronnie zasilanym (DFIG)	88
		2.7.2. Elektrownia wiatrowa z generatorem synchronicznym (FCI)	90
		2.7.3. Przykład 2.1	93
		2.7.4. Przykład 2.2	93
		2.7.5. Przykład 2.3	97
		Regulacja napięcia i mocy biernej w stanach awaryjnych	99
			104
	2.10.		107
		• •	107
			114
		2.10.3. Baterie kondensatorów	
			120
			125
		2.10.5. Kompensator ze stałą baterią kondensatorów i dławikami	
		z kontrolowanym, za pomocą łączników tyrystorowych	
			127
		1	150
		2.10.7. Zastosowanie układów energoelektronicznych	
-			171
]	LITE.	RATURA	195
3.	Mon	itorowanie warunków dostawy energii elektrycznej	205
			205
		•	206
			206

	3.2.2.	Implementacja pomiaru wskaźników	
		jakości dostawy energii elektrycznej	208
3.3.	Badar	nia porównawcze wskazań analizatorów	
	jakośc	ci dostawy energii elektrycznej	224
3.4.	Zagre	gowane wskaźniki jakości dostawy energii	231
	3.4.1.	Koncepcja zagregowanych wskaźników jakości	231
		Całkowity wskaźnik jakości napięcia	
		Składowe całkowitego wskaźnika jakości napięcia	
		Implementacja pomiaru grupowych wskaźników	
		jakości dostawy energii elektrycznej	238
3.5.	Lokal	izacja źródeł wahań napięcia	240
	3.5.1.	Podstawowe założenia jednopunktowych metod	
		lokalizacji zaburzeń	241
	3.5.2.	Korelacja zmia <i>n</i> P_{st} i mocy i/lub prądu (Metoda I)	241
		Badanie nachylenia charakterystyki napięciowo-prądowej	
		(Metoda II)	242
	3.5.4.	Badanie kierunku przepływu mocy interharmonicznych	
		(Metoda III)	242
	3.5.5.	Analiza "mocy wahań napięcia" (Metoda IV)	244
	3.5.6.	Weryfikacja symulacyjna jednopunktowych metod	
		lokalizacji źródeł wahań napięcia	246
	3.5.7.	Weryfikacja laboratoryjna jednopunktowych metod	
		lokalizacji źródeł wahań napięcia	266
3.6.	Ocena	indywidualnej emisji zaburzeń	271
	3.6.1.	Ocena poziomu emisji wahań	
		na podstawie pomiarów porównawczych	272
	3.6.2.	Ocena poziomu emisji wahań	
		na podstawie analizy statystycznej	272
	3.6.3.	Pomiary poziomu emisji wahań napięcia	275
	3.6.4.	Pomiarowa ocena poziomu emisji harmonicznych	282
3.7.	Propa	gacja wahań napięcia w systemie elektroenergetycznym	285
		Propagacja wahań napięcia z sieci WN do sieci SN	
		Sieć obciążona odbiornikami o stałej impedancji zastępczej	289
	3.7.3.	Sieć obciążona odbiornikami o impedancji	
		zależnej od wartości napięcia	291
	3.7.	4. Propagacja wahań napięcia w sieci	
		z odbiornikami statycznymi i wirującymi	
	3.7.5	5. Wpływ mocy silnika na poziom tłumienia wahań	294
	3.7.0	6. Wpływ liczby silników	
		na poziom tłumienia wahań napięcia	295

	3.7.7.	Wpływ charakteru i wartości momentu obciążenia silnika	
		na poziom tłumienia wahań napięcia	295
	3.7.8.	Wpływ zmian charakterystyki momentu napędowego turbiny	
		na poziom wahań napięcia	296
	3.7.9.	Wpływ częstotliwości zmian napięcia	
		na poziom tłumienia wahań	298
	3.7.10.	Wpływ częstotliwości wahań emitowanych przez różne źródła	
		na sumaryczny poziom zaburzenia	299
	3.7.11.	Propagacja wahań napięcia w układach rzeczywistych	300
	LITERATUI	RA	302
1	Rozproszon	o systemy	
т.	-	nia wskaźników jakości dostawy energii	307
		adzenie	
	-	ra rozproszonego systemu	501
		owania jakości dostawy energii elektrycznej	316
		tor jakości energii elektrycznej	
		Certyfikat zgodności z normą PN EN 61000-4-30	
		, interpretacja i raporowanie wyników	
		wskaźników jakości dostawy energii elektrycznej	332
		y system monitorowania jakości dostawy energii elektrycznej	
		lemii Górniczo-Hutniczej im. S. Staszica (AGH)	343
		szony system ciągłego monitorowania jakości dostawy	
	energii	elektrycznej w punktach przyłączenia rozproszonych	
		rialnych źródłeł enrgii – wirtulane hybrydowe źródło energii	345
	4.6.1. C	Opis punków pomiarowych	349
	4	6.1.1. Farma wiatrowa – Sierpc (S1)	349
	4	.6.1.2. Farma fotowoltaiczna – Kraków (M1)	350
	4	.6.1.3. Generator biogazowy – Kraków (M2)	351
	4	6.1.4. Turbina wodna – Siersza (M3)	351
	4	6.1.5. Farma fotowoltaiczna – Ruda Śląska (R1)	352
		6.1.6. Turbina wiatrowa – Lipie	
	4	.6.1.7. Elektrownia fotowoltaiczna typu tracker – Lipie (L2)	353
		6.1.8. Farma fotowoltaiczna – Warszawa (W1)	354
	4.6.2. S	System monitorowania jakości dostawy energii elektrycznej –	
		rodowisko WinPQ	355
		rzykładowa analiza jakości dostawy energii elektrycznej	
		lla wybranych obiektów	361
	_	cja danych pochodzących	
	od różn	vch przyrzadów pomiarowych	375

	4.7.1. Struktura bazy danych	378
	4.7.2. Przepływ danych	379
	4.7.3. Opis formatów pozyskiwanych danych	379
	4.7.3.1. Pliki w formacie PQDIF	379
	4.7.3.2. Pliki w formacie COMTRADE	381
	4.7.3.3. Pliki txt, csv	382
	4.7.3.4. Dane pozyskiwane bezpośrednio z bazy danych	383
	4.8. Wirtualne hybrydowe źródło energii elektrycznej –	
	wirtualny bilans energetyczny	383
	4.8.1. Analiza pracy punktów pomiarowych	384
	4.8.2. Analiza efektywności produkcji energii elektrycznej	387
	4.8.3. Moc hybrydowej elektrowni	390
	4.8.4. Wirtualne bilansowanie	391
	LITERATURA	392
_	Drognozovania ganavasii anavgii za źwódał odnowialnych	205
э.	Prognozowanie generacji energii ze źródeł odnawialnych	
	5.1. Wprowadzenie	
	5.1.2. Model predykcji produkcji energii	393
	za pomocą sztucznej sieci neuronowej	206
	5.2. Badania praktyczne elektrowni wiatrowych	
	5.2.1. Prognozowanie generowanej energii	377
	przez elektrownię wiatrową FW 1	
	za pomocą sieci neuronowej	400
	5.2.1.1. Badanie wpływu czynników zewnętrznych	700
	na pracę elektrowni	400
	5.2.1.2. Prognozowanie produkcji energii elektrycznej	700
	podczas pracy elektrowni z pełną mocą	403
	5.2.1.3. Budowa i badanie modelu	103
	uwzględniającego ograniczoną liczbę	
	pracujących turbin	411
	5.2.2. Prognozowanie pracy elektrowni wiatrowej FW 2	
	za pomocą sieć neuronowej	416
	5.2.3. Prognozowanie generowanej energii elektrowni wiatrowej FW 3	
	za pomocą sieci neuronowej	427
	5.2.3.1. Badanie wpływu czynników zewnętrznych	
	na pracę elektrowni	428
	5.2.3.2. Wpływ kierunku wiatru na krzywą mocy elektrowni	430
	5.2.3.3. Rozkład prędkości wiatru wewnątrz farmy wiatrowej	431
	5.2.3.4. Prognozowanie produkcji energii elektrycznej	
	podczas pracy elektrowni z pełną mocą	436

	5.3. Modele predykcyji produkcji energii	
	za pomocą sztucznej sieci neuronowej dla instalacji fotowoltaicznej	44
	5.4. Badania praktyczne PV	44
	5.4.1. Instalacja PV1	44
	5.4.2. Wpływ warunków meteorologicznych na pracę instalacji PV	45
	5.4.3. Prognozowanie produkcji energii elektrycznej instalacji PV1	45
	5.4.4. Instalacja PV2	45
	5.4.5. Prognozowanie produkcji energii elektrycznej instalacji PV2	45
	5.5. Wiarygodność prognozowania pogody	45
	5.5.1. Promieniowanie słoneczne	45
	5.5.2. Prędkość wiatru	45
	5.5.3. Temperatura	
	5.5.4. Wilgotność	
	5.5.5. Opad	45
	LITERATURA	45
6.	Modelowanie elektrowni hybrydowej	
	6.1. Opis projektu	
	6.2. Model systemu	46
	6.2.1. System fotowoltaiczny (PV)	
	6.2.1.1. Charakterystyki nasłonecznienia	46
	6.2.1.2. Charakterystyki energetyczne	
	modelowanej elektrowni fotowoltaicznej	
	6.2.2. Elektrownia wiatrowa (EW)	40
	6.2.2.1. Charakterystyki wiatru	4
	6.2.2.2. Charakterystyki energetyczne elektrowni wiatrowej	4
	6.2.3. Charakterystyki energetyczne elektrowni hybrydowej	4′
	6.2.4. Zasobnik energii (ZE)	4′
	6.3. Symulacja rozpływów mocy	4′
	6.3.1. Przykładowe wyniki obliczeń rozpływów mocy	4
	6.3.2. Wnioski	48
	LITERATURA	48
_		4.
٠.	Badania nad zasobnikiem energii jako element gry na rynku energii	49
	7.1. Wprowadzenie	49
	7.2.1 P. J.	49
	7.2.1. Ryzyko otwartej pozycji	
	7.2.2. Własności cen energii	49
	7.2.2.1. Towarowa Giełda Energii	
	7.2.2.2. Własności cen energii na rynku RDN	49

7.3. Podejmowanie decyzji inwestycyjnych	504
7.3.1. Kryteria oceny projektów inwestycyjnych	505
7.3.2. Wartość dzisiejsza netto NPV	505
7.3.3. Wewnętrzna stopa zwrotu	507
7.3.4. Wycena projektów inwestycyjnych OZE	507
7.3.5. Wycena zasobnika energii elektrycznej	509
7.3.6. Warunki istnienia arbitrażu	510
7.4. Metoda opcji realnych w wycenie zasobnika	517
7.4.1. Wady klasycznych metod wyceny projektów inwestycyjnych	517
7.4.2. Opcje realne w wycenie zasobnika	518
LITERATURA	520
ZAŁĄCZNIKI	
ZAŁĄCZNIK A Przykładowa analiza finansowa instalacji PV	523
A1. Założenia i metodyka	523
A2. Podstawowe założenia analizy	523
A3. Metody analizy	524
A4. Warianty analizy	525
A5. Wyniki analiz	526
A6. Wnioski	529