Spis treści

	Streszczenie	7
	Summary	9
	Spis najważniejszych skrótów, symboli i oznaczeń	11
1.	Wprowadzenie	15
2.	Charakterystyka metody XPS	17
	2.1. Podstawy metody	17
	2.2. Praca wyjścia i kalibracja skali energii	19
	2.3. Głębokość próbkowania i rozdzielczość analizy	21
	2.4. Widmo spektralne	23
	2.5. Przesunięcie chemiczne linii spektralnych	26
	2.6. Analiza ilościowa	27
3.	Wpływ wygrzewania w próżni na strukturę tlenku	
	na powierzchni czystego niobu	30
	3.1. Przedstawienie problemu badawczego	30
	3.2. Materiał i przebieg eksperymentów	32
	3.3. Wyniki badań	33
	3.4. Wpływ wygrzewania niobu w próżni	
	na parametr dobroci wnęk rezonansowych	41
4.	Segregacja powierzchniowa w tlenku cyrkonu stabilizowanym itrem	
	i w tlenku cyrkonu stabilizowanym itrem	
	oraz domieszkowanym tytanem	44
	4.1. Sformułowanie problemu badawczego	44
	4.2. Materiał badawczy i praca doświadczalna	47
	4.3. Wyniki badań i ich dyskusja	48
	4.4. Podsumowanie i wnioski	54

5.	Charakterystyka metody SIMS	55
	5.1. Podstawy metody – rozpylanie jonowe	55
	5.2. Możliwości i zastosowanie techniki SIMS –	
	metoda dynamiczna i statyczna	58
6.	Heterodyfuzja kationów w stabilizowanym tlenku cyrkonu	62
	6.1. Postawienie problemu badawczego	62
	6.2. Model dyfuzji wzdłuż granic ziaren	64
	6.3. Metodyka pracy doświadczalnej	70
	6.4. Prezentacja wybranych wyników	73
	6.5. Dyskusja wyników	78
	6.6. Podsumowanie	81
7.	Dyfuzja własna i powierzchniowa wymiana izotopowa tlenu	
	w stabilizowanym tlenku cyrkonu i domieszkowanym tlenku ceru	83
	7.1. Wprowadzenie w tematykę badawczą	83
	7.2. Opis pracy doświadczalnej	86
	7.3. Wyniki badań i ich dyskusja	88
	7.4. Wnioski	92
8.	Zakończenie	94
	8.1. Podsumowanie badań metodą XPS	94
	8.2. Podsumowanie badań metodą SIMS	97
	8.3. Wnioski ogólne	98
	Cytowana literatura	99