Spis treści

Wstęp	7
1. Charakterystyki przepływowe i energetyczne wiatru	9
1.1. Wiatr jako zjawisko fizyczne.	
Określenia, źródło powstawania wiatru	9
1.2. Podstawowe charakterystyki wiatru	11
1.2.1. Rozkłady prędkości wiatru	
w funkcji wysokości nad powierzchnią gruntu	11
1.2.2. Rozkład gęstości mocy strumienia powietrza	
w funkcji wysokości	15
1.2.3. Porywy wiatru, turbulencja atmosferyczna	17
1.2.4. Średnioroczna prędkość wiatru i jej rozkład	22
1.3. Energetyczna wydajność EW w zależności od V_{sh} oraz V_o	33
1.4. Przybliżona ocena zasobów energii wiatru w Polsce	
oraz jej zmiany sezonowe	38
1.5. Wpływ parametrów atmosferycznych powietrza	
na wydajność energetyczną EW	44
1.6. Czynniki wpływające na możliwości wykorzystania energii wiatru	45
Literatura	47
2. Charakterystyki elektrowni wiatrowych.	
Przykłady rozwiązań konstrukcyjnych	48
2.1. Wprowadzenie	
2.2. Podstawowe parametry i charakterystyki EW	
2.3. Opis EW o pionowej osi obrotu	
2.4. Opis EW o poziomej osi obrotu	
2.4.1. Klasyczne EW o poziomej osi obrotu.	
Przegląd dotychczasowych konstrukcji EW	56
2.5. Opis konstrukcji EW	62

	2.6. Stosowane rozwiązania konstrukcyjne	
	podstawowych zespołów EW	63
	2.6.1. Głowica	63
	2.6.2. Wirnik	66
	2.6.3. Wieża	88
	2.7. Podsumowanie	91
	Literatura	91
3.	Eksperymentalne metody badawcze w energetyce wiatrowej	92
	3.1. Wprowadzenie	92
	3.2. Zarys teorii podobieństwa w aspekcie badań opływu modeli	
	elektrowni wiatrowej i jej elementów	92
	3.3. Tunele aerodynamiczne	98
	3.4. Podsumowanie	110
	Literatura	111
4.	Teoretyczne metody badawcze energetyki wiatrowej	112
	4.1. Wprowadzenie	112
	4.2. Zagadnienia podstawowe	113
	4.2.1. Równanie ciągłości	113
	4.2.2. Zasada zachowania pędu	115
	4.2.3. Równania Eulera i równanie Bernoulliego	119
	4.2.4. Przepływy potencjalne ośrodka nieściśliwego	122
	4.2.4.1. Funkcja prądu	123
	4.2.4.2. Rozwiązania elementarne równania Laplace'a	
	dla potencjału w przepływie płaskim	125
	4.2.4.3. Opływ walca kołowego	129
	4.2.4.4. Opływ płaski bryły symetrycznej	131
	4.2.4.5. Przepływ wokół profilu cienkiego	
	przy niezerowym kącie natarcia	133
	4.2.4.6. Metody panelowe: zastosowanie rozkładu	
	osobliwości hydrodynamicznych na powierzchni ciała	
	do wyznaczania opływu	142
	4.2.5. Odcinek wirowy w przestrzeni i prawo Biota-Savarta	152
	4.2.6. Warstwa przyścienna. Źródła oporu ciał	158
	4.2.6.1. Równania Prandtla dla warstwy przyściennej	158
	4.2.6.2. Równania von Kármána dla warstwy przyściennej	161
	4.3. Elementarne teorie pracy turbiny wiatrowej o osi poziomej	170
	4.3.1. Teoria strumieniowa	170
	Literatura	176

5.	Ger	neratory, układy regulacji, konfiguracje siłowni,	
	aku	mulacja energii elektrycznej	178
	5.1.	Wybrane elementy maszyn elektrycznych	178
	5.2.	Prądnice prądu stałego	182
		5.2.1. Prądnica obcowzbudna	184
		5.2.2. Prądnice samowzbudne	185
		5.2.2.1. Prądnica bocznikowa	185
		5.2.2.2. Prądnica szeregowa	186
		5.2.2.3. Prądnica szeregowo-bocznikowa	187
	5.3.	Generatory prądu przemiennego	187
		5.3.1. Moc chwilowa, czynna, bierna i pozorna	187
		5.3.2. Generator synchroniczny	194
		5.3.3. Generator asynchroniczny	198
		5.3.4. Korekcja współczynnika mocy	203
		5.3.5. Synchronizacja generatora synchronicznego z siecią odbiorczą	206
	5.4.	Rozwiązania konstrukcyjne	207
		5.4.1. Podstawowe układy pracy elektrowni – układ klasyczny	207
	5.5.	Układy regulacji	213
		5.5.1. Regulacja ustawienia elektrowni w kierunku wiatru	214
		5.5.2. Regulacja kąta ustawienia łopat	215
		5.5.3. Regulacja przez zmianę obciążenia	216
		5.5.4. Regulacja przez "przeciągnięcie"	216
		5.5.5. Sterowniki PLC	217
	5.6.	Przetworniki częstotliwości	218
	5.7.	Pomiary parametrów mechanicznych	222
	5.8.	Konfiguracje indywidualnych siłowni wiatrowych	227
	5.9.	Akumulacja energii elektrycznej	229
		5.9.1. Akumulator ołowiowy	230
		5.9.2. Akumulator kadmowo-niklowy	230
		5.9.3. Akumulator NIMH niklowo-wodorkowy	230
		5.9.4. Akumulator jonowo-litowy	231
	5.10). Podsumowanie	231
	Lite	ratura	231
6.	Pro	jektowanie i dobór układu przepływowego elektrowni wiatrowej	233
		Wprowadzenie	233
	6.2.	Dobór wirników EW	234
		6.2.1. Liczba łopat wirnika EW	
	6.3.	Geometria i konstrukcja łopat wirnika EW	238
		Charakterystyka wirników EW	

6.5. Sposób doboru optymalnych parametrów	
geometrycznych i ruchowych EW	243
6.6. Określenie obciążeń normalnych i granicznych EW	263
6.7. Obciążenia dynamiczne generowane opływem elementów EW	267
6.8. Podsumowanie	275
Literatura	275